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Abstract—Considering the time-varying power consumption
of users and cost of generation over a day, demand side manage-
ment (DSM) has become essential to meet the excessive need of
users with the limited source of power. In this paper, we propose
a utility based optimal Real-Time Pricing (RTP) mechanism
for the future smart grid communication systems such that the
electricity price corresponds to the optimum system welfare.
Here, we formulate a distributed algorithm which is based on
the two-way communication among users, decision maker, and
energy provider through the exchange of control messages, and
determine the optimal price maintaining the equality between
the total demand and the offered generation. We also propose
a novel cost function for energy provider exhibiting how it
reduces the impact of the change in user number to electricity
price, unlike a previously proposed cost function. Simulation
results confirm that the proposed algorithm is favorable for
both the users and energy provider in terms of electricity price
and generation cost respectively. It is also demonstrated that
our new cost function makes the RTP algorithm user-adaptive
and offers a better welfare to both the users and the energy
provider.

Index Terms—Smart Grid, Smart Home, Real Time Pricing
(RTP), Demand Side Management (DSM), Dual Decomposition.

I. INTRODUCTION

The smart grid system is regarded as the next generation
power grid, where communication technology is integrated
into the power grid for its autonomous operations [1]. The
Smart home is conceived as an integral part of the total
framework where users are allowed to monitor and con-
trol their energy consumption in real-time [2]. The system
features lots of intelligent networked electronic devices e.g.,
smart meters, sensor, automatic control devices, etc., which
coupled with a demand side management (DSM) strategy
enable the grid to use the available energy more efficiently
without installing new generation and transmission infras-
tructure [3], [4]. Present DSM programs aim at solving one or
both of the following objectives: reducing consumption and
shifting consumption [5]. The former can be achieved among
users by encouraging energy-aware consumption patterns and

by constructing more energy efficient buildings [6]. However,
there is also a need for practical solutions to shift the high-
load household appliances to off-peak hours for avoiding
over-consumption and under-consumption during peak and
off-peak periods respectively [7]. Matching demand and
supply of electricity is one of the major challenges for the
future smart grid systems.

Taking this into consideration, many DSM techniques
have been proposed in the smart grid literature. One of the
strategies is Direct Load Control (DLC) [8], where based
on an agreement between the utility company and the users,
the utility company can control the operations and energy
consumption of particular appliances in a household. How-
ever, users’ privacy is a major concern in employing DLC
programs. In [5], a DSM scheme for cooperating customers is
proposed and solved in the context of an energy consumption
game. The outcomes of the distributed algorithm in [5] are
fewer customer charges and a smaller peak power demand.
On the other hand, a utility function approach is adopted in
[9], where a distributed algorithm is proposed for Real-Time
Pricing (RTP). A key feature of the mechanism in [9] is
its achievable optimality without revealing customer related
parameters, which are assumed to be private. This approach
is, by far, the most popular than the other existing DSM
mechanisms.

However, none of the approaches consider the impact of
a change in user numbers to electricity price. In [9], the
system model considers a fixed number of users. If the
number of users increases in the system, the algorithm in
[9] penalizes all the users by price increment or by making
the users consume less amount of power, which is not
rational. A more reasonable option is to charge the users
with higher unit price only if the demand increases because
of their individual increase in demand, not because of the
increase in user number. In light of this, we propose a novel
utility based optimal RTP mechanism based on the two-way
communication infrastructure envisioned in the smart grid,
which eliminates the impact of the change in user number.



The contributions of this paper can be summarized as follows.
• We propose a utility based RTP framework for DSM

management in future smart grid systems. To do so,
users, the decision maker, and the energy provider
communicate with each other through two-way message
exchanges over a cellular network requiring no human
intervention.

• A new cost function for energy provider is proposed
and integrated into the proposed framework, which
eliminates the impact of the change in user number to
real-time price.

• We formulate the RTP as an optimization problem
such that the total demand and generation of electricity
match. We find each user’s demand and the energy
provider’s total offered generation corresponding to the
optimal price leading to the optimal system welfare.

• The proposed framework includes constraints to limit
the total energy consumption level of all users to the
total electricity generation capacity of the system offered
by the energy provider.

The remainder of this paper is organized as follows. In
Section II, we propose our RTP based DSM system including
the formulation and implementation of our optimization
problem. Simulation results and analysis are given in Section
III. We conclude the paper in section IV.

II. PROPOSED REAL TIME PRICING (RTP) BASED
DEMAND SIDE MANAGEMENT (DSM) SYSTEM

A. System Model

We consider a smart power system with an ideal cellular
network based two-way communication infrastructure, which
consists of a single energy provider, several users and a
decision maker. In Fig. 1 the whole system model is depicted
where the numbers indicate the interaction between users,
energy provider, and decision maker serially. Information
flow corresponding to the numbers in Fig. 1 are explained as
below.

1) Initial price is sent from the decision maker to BS and
energy provider.

2) Price update from BS to users (smart homes).
3) Maximum demand update from users to BS.
4) Total demand data from BS to decision maker.
5) Update of offered generation corresponding to the

maximum welfare from energy provider to decision
maker. Decision maker then updates price.

Then, Step 1 to 5 are repeated until the price is optimal,
which is the price at which the total demand and the offered
generation reconcile.

B. User's Utility Function

’Utility’ is an economic term referring to the total sat-
isfaction received from consuming a good or service. A
consumer’s utility is hard to measure but it can be determined

Fig. 1: System model of the proposed RTP based DSM.

indirectly with consumer behavior theories which assume that
consumers will strive to maximize their utility. The different
response of different users to various price scenarios can
be modeled analytically by adopting the concept of utility
function from microeconomics [10].

In light of this, we assume that the users’ utility function
fulfills the following properties:

• Every user has a level of consumption different from
other users and that changes from a time interval to
another.

• A minimum consumption is to be satisfied in all time
intervals; while a maximum consumption is the con-
sumption level when all electricity needs of a user are
satisfied during a time interval.

• Users are always interested in consuming more until
reaching their maximum needs which means the utility
function is non-decreasing.

• The increase in the utility function of a user when
getting the first units of electricity is much higher than
the increase in the same utility function when receiving
the nth(n > 1) unit of electricity. In other words, the
level of satisfaction gets saturated over time. So, the
marginal benefit of users is a non-increasing function.
Again, it is convenient to have linear marginal benefit.
So the 1st derivative of utility function should be linear
and negative.

• Zero consumption means zero utility.
To satisfy the assumptions, the utility function should be

quadratic corresponding to linear decreasing marginal benefit,
We consider the following utility function [9]



U(x,w) =

wx− α
2 x

2 if 0 ≤ x ≤ w
α

w
α if x ≥ w

α

(1)

where x denotes power consumption level of the user, w is a
parameter which may vary among users and also at different
times of a day, α denotes a predetermined parameter and
Marginal utility = δu

δx = −αx; which is linear and the slope
is negative.

If a user consumes x kW electricity at an hour and price
of each unit is P , then the welfare of each user can be given
by

W (x,w) = U(x,w)− Px (2)

For each unit price P , each user will try to adjust its power
consumption x to maximize his own welfare.

C. Energy Provider's Cost Function

The cost function for electricity produced using thermal
generators is represented usually using a quadratic or piece-
wise linear function. In this paper, we adopt the following
quadratic cost function [5], [9], [11]

C(L) = aL2 + bL+ c (3)

where C(L) denotes the operating cost of generation, L de-
notes electrical power output (power generation), and a, b and
c are the fuel cost coefficients(a > 0 and b, c ≥ 0). Energy
sources such as solar, wind and hydro are not included in (3)
because the fuel that drives its power generation is without
a price.

In [9], the coefficients are set to a = 0.01, b = 0 and
c = 0. For a particular price, the energy provider tends
to expend a specific amount of cost corresponding to its
maximum welfare. Since the coefficients in (3) are considered
constant in [9], the energy provider offers a fixed generation
of electricity for a fixed cost irrespective of change in user
number. However, with the increase of user number, demand
gets increased. If we use fixed coefficients, offered generation
by the provider will not increase for a fixed electricity price.
So, the users will be forced to reduce their demand or
they will be penalized with the price increment. But it is
not rational to penalize the users for the increase of user
numbers. Hence, we propose a new cost function which
is user adaptive, that is to say, with the increase of user
number, the energy provider increases its offered generation
maintaining a fixed price. We use the user number N as a
variable such that the cost of generation per user does not
change and the offered price remains fixed as long as the total
demand is within the maximum generation capacity of the
energy provider. Therefore, the users do not get punished for
the increment of the user number, rather they are penalized
only when they raise their individual demand. However, if the
total demand goes beyond the maximum generation capacity,

the price has to be increased to keep the demand under
control. Our proposed cost function is as follows

C(L) =
dL2

N
(4)

where d is a predetermined parameter that can adjust the
optimized price for a fixed set of parameters. When the value
of d and N are fixed and same, using (3) or (4) generates
the same real-time price.

D. Optimization Problem

Our objective is to maximize the welfare of the users
in the grid system and minimize the generation cost of
energy providers [12]. The two optimization problems can be
merged into one maximization problem that is to maximize
the overall welfare. Welfare is in our case defined as the
difference between the sum of utility functions of all users
and the cost of generation (that depends itself on the number
of units produced). But the objective function is subject to
several constraints such as ensuring the minimum electricity
needs of all users over all time periods. Another constraint
would be having the sum of all consumptions of the users
less or equal than the maximum generation capacity of the
energy provider. Therefore, the optimization problem is

max

[∑
k

N∑
i=1

U(xki , w
k
i )− Ck(Lk)

]
(5)

where k denotes one time slot. Equation (5) is subject to∑
iεN

(xki ) ≤ Lk (6)

and
mk
i ≤ xki ≤Mk

i (7)

where mk
i and Mk

i denote the minimum and the maximum
demand of the ith user.

E. Problem Solving: Dual Decomposition Approach

We solve the optimization problem by dual decomposi-
tion approach. The dual approach solves the problem in a
distributed fashion using a distributed algorithm. A part of
the optimization algorithm will run at the side of the users,
and the second part of the algorithm will be solved by the
energy provider. None of the two parts of the optimization
algorithm can be solved independently since the utility pa-
rameter for each user is private. Hence a continuous two-way
communication system should be established.

The optimization problem is a quadratic convex maximiza-
tion problem. A way to merge the objective function with
the constraint is the method of Lagrange Multipliers [13].
For instance, the Lagrange function for optimization problem
maximizing f(x, y) subject to g(x, y) = 0 is

L(x, y, λ) = f(x, y) + λg(x, y)



where λ is the Lagrange multiplier. According to this, the
Lagrangian for our optimization problem including the con-
straint is

L(x, y, λ) =

N∑
i=1

U(xki , w
k
i )− Ck(Lk)− λk(

N∑
i=1

xki − Lk)

After re-arranging the equation, we get the following

L(x, y, λ) =

N∑
i=1

(U(xki , w
k
i )−λkxki )+λkLk−Ck(Lk) (8)

Users will optimize
N∑
i=1

(U(xki , w
k
i )− λkxki ) (9)

Energy providers will optimize

λkLk − Ck(Lk) (10)

where λk is the Lagrange multiplier. If the energy provider
charges the user at a rate P = λk∗ and each individual
user tries to maximize its own welfare function, it will be
guaranteed by strong duality that the total power demand
will not exceed the offered power generation of the energy
provider.

F. Updating the Price

In our proposed model, price will be updated in an iterative
manner until two consecutive prices converge. We use the
following equation for updating the Lagrange Multiplier in
(8) which is described as the per unit electricity price

λkt+1 = λkt + γ
[∑

i

(xk∗i (λkt )− L∗
t (λ

k
t ))
]

(11)

where t is a particular time instance at which price is updated.
xk∗i and L∗

t are the optimized value from users and the energy
provider at instance t and γ is a pre-determined step size.

Price updating step from user's side is demonstrated in Fig.
2. As shown in the figure, we commence the iteration assum-
ing an arbitrary price. For this price, each user and the energy
provider solve their own welfare maximization problem and
send their respective results to the decision maker. It means
that each user sends its demand (point F) corresponding to
the maximum welfare (point A) at that particular price. The
energy provider performs the same operation and sends its
offered generation. Then based on the difference between
the total demand and offered generation, decision maker
updates the price using (11). If the difference between the
two consecutive prices is smaller than an assumed very small
value described as price accuracy, total demand and offered
generation match, and we consider the updated price as the
optimal one. Otherwise, the iteration goes on (from point B
to C and so on) until the difference between two successive
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Fig. 2: Principle of demand updating by a user.

Fig. 3: Illustration of the operation of the proposed
algorithm showing the interactions among users, decision

maker and energy provider in the system.

prices is smaller than price accuracy. The flowchart of solving
the optimization problem is given in Fig. 3.

III. RESULTS AND ANALYSIS

In this section, we present our simulation results and eval-
uate the performance of our proposed distributed algorithm.

A. Simulation Setup

• Minimum and maximum demand of all users are as-
sumed 1 and 320 units respectively.
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• The maximum generation capacity of energy provider
is assumed 10,000 units. It can supply the maximum
demands of 31 users.

• When a user meets its maximum demand, its utility is
the highest. From the users’ utility function (1), when
demand x ≥ w

α , the utility is the highest. Since we
assume α = 0.5, if we select w = xmax/2, we get the
maximum demand. Therefore, we select w randomly
from [1, xmax/2]. Random selection of w shuffles the
user demand between the minimum and the maximum
range.

• Step size is assumed γ = 0.001.
• Price accuracy is set at 0.002. Iteration continues till the

difference between two consecutive prices is less than
0.002.

• We use the Quadprog function provided by MATLAB
for maximizing welfare at a certain price. Quadprog is
a minimization tool. So the maximization problem is
turned into a minimization one by Max(f) = -Min(-f).

• We assume a low initial price of 20 unit before begin-
ning the iteration.

B. Analysis

Simulation results illustrating the iteration process of our
algorithm are from Figs. 4-5. For this purpose, we consider
N = 40 users in the system. As we start our simulation
assuming a low initial price, demand is found much larger
than the initial generation as seen in Fig. 5. Hence price goes
on increasing at each iteration (Fig. 4) based on RTP algo-
rithm reducing the difference between the demand and the
generation of electricity. The simulation runs till demand and
production match as shown in Fig. 5. The price corresponding
to this situation is the optimal price.

We also verify the performance of our proposed mecha-
nism in Figs. 6-8 illustrating the change of unit price, user
welfare and provider welfare with the change of user number.
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Fig. 6: Optimum price with the number of user.

As seen in Fig. 6, the price goes on increasing with the
number of users for the energy cost function used in [9].
Since increased user number means increased demand, the
price is raised so that the total demand reduces and matches
the offered generation. However, the price should be kept
constant with the change of user number so that the users
are not penalized unjustifiably. Our proposed energy cost
function is capable to keep the unit price stable in this case
(Figs. 6-8). We also illustrate how the value of d can play
a role to set the optimized price at different values under
different circumstances. The higher the value of d, the more
the optimized price will be because higher value of d will
cause the provider to generate less electricity. Moreover, we
observe an increment of price while using d = 0.3 when
the curve goes beyond the user number N = 40. That's
because lower value of d causes the optimized price to be
lower which motivates the user to consume more and the
total demand crosses the maximum generation capacity of
the energy provider very quickly with the increase of user
number. Consequently, the decision maker has to increase
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Fig. 8: Provider welfare with the number of user.

the price for limiting the demand.
Furthermore, the user welfare curve while using (3) de-

creases as the user number increases (Fig. 7) because of the
price increment with the user number. On the contrary, the
per user welfare while using our proposed cost function (4)
remains the same because of the fixed unit price. The overall
user welfare curve continues increasing with the user number
unless the total demand exceeds the maximum generation
capacity since the use of (4) ensures the satisfaction of more
users and the price remains fixed. Again, the provider welfare
increases in both cases (Fig. 8) since the unit price increases
while using (3) and more users can consume electricity
while using (4) generating more profit overall for the energy
provider. The provider welfare curve becomes more steep
when the total demand crosses the maximum generation
capacity of the provider. Hence it can be claimed that our
proposed cost function is a generalized one; it is more

addaptive to different situations and offers better welfare to
both the users and the energy provider.

IV. CONCLUSIONS

In this paper, we have proposed a utility based optimal
RTP mechanism for DSM. The proposed mechanism relies
on the two-way communication infrastructure envisioned in
the future smart grid. The optimal price has been calculated
matching the total demand with offered generation. We have
also proposed a novel user-adaptive cost function which can
neutralize the impact of a change in user number to the real-
time price and offers better welfare for both the users and en-
ergy provider. The performance of the proposed mechanism
has also been compared with a previously proposed popular
work demonstrating the flexibility and superiority of our
one. Our future works will consider a scenario with multiple
energy providers. The impact of the wireless channel as a
communication medium on the performance of the optimal
price will also be explored.
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