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Abstract— Wireless video capsule endoscope (VCE) is used toTriangulation [8] is usually employed to convert the proitim
diagnose lesions along digestive tracts. For proper diagse, it data into position information using the properties ofrgkes
is necessary to know the exact location of the lesions which i, ~qculate distances. In [9], the authors propose a ligiat

may be estimated by localizing the VCE. In this paper, we f | lizati h . bil h des
propose a simple VCE localization approach using static and range-iree localization scheme using mobile anchor no

dynamic degree based weighted centroid localization (WCL)in ~ €quipped with GPS which broadcasts its coordinates to the
our proposed approach, a sensor array of eight receivers issed sensor nodes as it moves through the network. Range-free
to estimate the distance of the moving capsule. The estimate algorithms are popular due to its simplicity and robustness
distance is then raised to a h_|gher degree to reduce the weigh to changes in wireless propagation properties. CentraidHo
of the remote sensors marginally lower. We propose a sub- ._ .. . e
optimal method of both static and dynamic degree calculatin !zatlop (CL) [2] s a range—f_ree RF-based Iocallzatl_on noeth
using the estimated distances. We also analytically compaitthe in Which the receiver localizes itself to the centroid of & se
optimal values of the degree to set benchmark to compare the of proximate reference points using a connectivity medtiic.
performance of our proposed sub-optimal methods. We devefp  CL, all points are assumed to be equally near the target node.
a 3D simulation platform using MATLAB to show the results  \yeighted centroid localization (WCL) [10] aims to improve
and to verify the accuracy. We use indices named localizatio localization accuracy by introducing greater weight to som
error ( LE), average localization error (ALFE), standard deviation 8 . .
(STD) and the normalized error to evaluate the performance. Points which are more close than others and less weight to
Using static optimal degree, theALE is 5.19 mm where ALE the farther points. In the literature, there are severalyaisa
of 6.55 mm is reachable using the sub-optimal method. For to improve the accuracy of WCL. Most of those are for indoor
dynamic degree,ALE using optimal degree is 3.8nm, while the - 5 5jications. In [11]- [12], the algorithms are based on RSS
ALE using sub-optimal degree is 6.27m. Thus, our proposed - .
algorithms approach benchmark accuracy even if we change Wh'_Ch take the_remprocal of the sum and_the sum of the
the dimension of the sensor network. The performance is also reciprocals of distances to calculate the weight. The astho
compared to the existing algorithms in the literature whichshows in [13] considered the sum of the reciprocal of the distances
better performance using our proposed algorithms. and the side length of the triangle to calculate the weighe T
average localization error reported in [10]Aig2 m, in [11] is
10.14 m, in [12] is 2.54 m and in [13], it iS2.33 m. In [14],
the authors used the node degree based WCL and in [15], the
Video capsule endoscope (VCE) is used to send clesuthors proposed linear-regression-based WCL to impiwee t
images of abnormalities of the gastrointestinal (Gl) tragberformance of hop count localization using centralizatod
Localization of the VCE is the process of determining itsalibration using linear regression and correction. Theame
unknown location while it travels through the Gl tract. Téerlocalization error using [14]- [15] is close th38 m. In [16],
are very few algorithms available in the literature whiclthe authors replace the weight with the sum of the distance
proposes system to localize the VCE. Some of those are basgeclprocals and use the correction factor as the degree of
on electromagnetic field strength and some on magnetic figltance. The average error reporte®.i125 m. In [17], the
strength. Magnetic field strength based localization systeauthors raises the distance to different degree and forafigpe
require extra space of the capsule. Our focus is to develdegree they proposes a position refinement by finding offline
an easy and cost effective VCE localization system based calibration parameters. They have reporiei8 » mean error
radio frequency (RF). using6.25 x 10~2 m resolution. In [18], the authors introduces
RF localization algorithms may be range-based [1] or rangéynamic weighting factors that are solely dependent on the
free [2]. In range-based schemes, nodes determine their locorrelation of the RSSI and reports mean error5af% or
tion based on distance or angle estimates to some refered@s3 m. For very short range, the authors in [19] propose
points. Such estimates may be acquired through differemtreal-time RSSI-based tracking system using an advanced
methods, such as time of arrival (TOA) [3], time differencealibration method and filtering techniques in close-pmaf
of arrival (TDOA) [4], angle of arrival (AOA) [5], or re- of up tol m. Their experiment shows distance estimation error
ceived signal strength indicator (RSSI) [6]. The most comm®f 0.7 ¢m with standard deviation of ¢m for a single mea-
range-based algorithm is trilateration. Trilateratiomisimple surement. However, the correction range algorithms in-[15]
positioning technique [7], which estimates the mobile reod¢19] requires the prior knowledge of the original distanoe t
location by intersection of the circles, each centered @n tfind the correction coefficient. In [20], the authors usedghiei
anchor node position, with a radius equals to the estimatedmpensated WCL algorithm based on RSSI (WCWCL-RSSI)
distance between the mobile node and the anchor notteestimate the position without any knowledge of the pasis lo
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exponent and other prior information. The maximum averagesitions of target which is practically impossible. Théheus
error reported i2.81 m. report mean square error (MSE) 638.6 mm with standard
There are very few algorithms proposed in the literature tteviation61.14 mm before calibration and MSE &f.15 mm
localize the video endoscopic capsule. Most of the proposeith ST D 3.5 mm after applying calibration, respectively
algorithms are range-based. In [21], [22], the authors wotlsing 600mm x 600mm x 600 mm dimension of the sensor
on channel modeling for medical implant communication senetwork of8 sensors.
vices (MICS). In [21], the authors model the electromagneti Most of the reported VCE localization algorithms [24]—
(EM) propagation considering the absorption charactdoma [29] are based on trilateration or triangulation approadiciv
in Gl parts of human body and its impact on propagatiozan compute location using distance and angle information
model. The simulation results are in good agreement witi triangle formed by three reference sensor nodes [31].
the finite-difference-time-domain (FDTD) measurements. However, for more number of sensor nodes, it's computationa
[22], authors construct an immersive visualization envinent complexity increases. The performance of the trilateratio
to characterize RF propagation from medical implants amdangulation based methods in [24]-[29] also require very
to model the statistical path loss for MICS channels. Thaecise knowledge on channel parameters, because itg-perfo
model is based on four near surface and two deep tissmance decreases excessively with estimation errors imnethan
implant applications in a typical male human body. In [23], 81]. As human body is a complex environment of experimen-
review on VCE localization literature is presented. In [2hp tation, a simple localization approach with less compatei
paper presents a capsule endoscope localization systech wisiomplexity is required. WCL [10] is a simple localization
utilizes only RSSI to estimate the location using maximurmpproach [20] which can estimate location using three oemor
likelihood (ML) estimation and least squares (LS) methodensors with less computational complexity, less hardease
The simulation results show that the ML localization impgev and less communication overhead [20], [32]. It has attrhcte
the performance by80 percent, as compared with the LSa lot of interests [12]-[20] in outdoor environment becaake
localization. In [25], the linear least square estimatisrused simplicity and robustness to changes in wireless propagati
to estimate the initial position of the source based of pliise properties. Though it is dependent on beacon numbers and
ference of arrival followed by a non-linear least squarehodt placements, the accuracy can be significantly improvedgusin
to improve the localization accuracy. The reported pasitianore sensors [31]. As human body is extremely heterogeneous
estimation error is withirl ¢m in 2D case for homogeneousmedia, the channel suffers severe multipath propagation an
and heterogeneous phantom. It is extended b case for heavy shadow fading due to organs of different electrical
homogeneous cylinder case giving error withiem. In [26], parameters [22], [24]. WCL is much more robust against srror
the authors proposes an algorithm using RFID of the antenniashe estimated channel model parameters [20], [31]. Tious,
to 3D coordinates of capsule using center of gravity locaticaacomplex environment as human body, WCL is an appropriate
estimation algorithm. The mean estimation erroRigm as choice for VCE localization.
reported. In [27], the authors discuss system and method ofn this paper, we propose two algorithms of video endo-
determining the real-time location of an omni-directioRd scopic capsule localization using static and dynamic degre
system while the target transmitter is moving freely insaahe based WCL. We propose a sub-optimal method of degree
inaccessible organ using triangulation algorithm. Theyehacalculation for static and dynamic cases. As the received
modelled the RF system and simulate the effects of organssignal is scattered due to the random shadowing and multi-
signal quality at various distances. The average err@s7% path propagation effects of non-homogeneous environment,
as reported. Most of the reported methods [24]-[27] reguireve linearize the path loss considering minimum path loss
TOA or RSS estimation. However, some unique challengdsviations. The distance is then calculated using the finec
exist for in-body localization due to the complex naturehivit path loss. The calculated distance is raised to a higheedegr
the human body. In [28], the authors directly estimate tisado to decrease the weight of the higher distance sensors adition
tion of the capsule (as the emitter) without going through trand to calculate the weight. The static sub-optimal deggee i
intermediate stage of TOA or signal strength estimatioreyThcalculated using the maximum distance covered by the sensor
have reported.5 — 2 ¢m average error usin§ — 16 sensors. and the dynamic sub-optimal degree is calculated using the
In [29], the authors investigate the potential accuracyitlimdifference of estimated distance to a reference distanee. W
for RSS triangulation based capsule localization in the dnumalso analytically compute the optimal values for the statid
Gl tract and reports average localization error 4% mm dynamic degrees and set the values as the benchmark accuracy
using 32 sensors. In [30], the authors propose a RSSI bas@é develop a simulation tool using MATLAB to verify the
video capsule endoscope (VCE) localization approach waeraccuracy of our proposed static and dynamic degree based
wearable antenna array of eight sensors is used to localkze algorithms using different dimension of the sensor network
capsule using adaptively linearized linear least squar€l-W We observe that using our proposed optimal static degree, an
algorithm. They propose signal path loss linearizatiomaisi average localization errotA(LE) of 5.19 mm with standard
the extracted signal parameters considering minimum path | deviation 67'D) of 4.18 mm is reachable, where using the
deviation. Then, the distance-dependent linearized pedh | suboptimal static degree, we can achieVBFE of 6.55 mm
is used to calculate the weight and the position using WCWwith ST'D of 6.61 mm. Again, using the dynamic degree, the
Hence they go through a calibration process using the liniti@ptimal WCL accuracy improves significantly withLE of
estimated positions which needs prior knowledge of the réaB mm and ST D of 3.14 mm. Using sub-optimal dynamic



TABLE |
NOTATIONS

No. of total positions of the target

M (1-2530 for our simulation system)
N No. of sensors used to localize the capsule
which is 8 in our proposed algorithm
Tx Transmitter
Rx Receiver
Pr Capsule transmitted power B
Matrix (N x M) containing
RSSI the received signal idB
RSSI. Received signal strength & sensor
“m from mt" position of the target
d Distance of thei-th sensor and target for
t,m mth position of the target
dmaz Maximum distance of the target and sensor
dmin Minimum distance of the target and sensor
Path loss at reference distandg of
Spr(do)

the target which is less thady .

SD (07 U%SS)

Random variable with zero mean
and standard deviatiobgsg

«a Path loss exponent
ORSS Standard deviation of the random variable
oo (ds ] Mean or linearized path loss éfth
PL(dim)iin sensor form-th position of the target
W, Weight of the:-th sensor
tm for m-th position of the target
Wi m)eopt Weight using Static optimal degree

W

i,M)ssopt

Weight using Static sub-optimal degree

W(i-,m)dupt Weight using Dynamic optima degree
W(i_’m)dwm Weight using Dynamic sub-optimal degree
g Degree of distance
Jsopt Static optimal degree
Jssopt Static sub-optimal degree
Jdopt Dynamic optimal degree
Jdsopt Dynamic sub-optimal degree
3 The i-th sensor’s position
T; i-th sensor’'sz-coordinate
Yi i-th sensor’sy-coordinate
2 i-th sensor'sz-coordinate
R M Real positions of the target in vector form
Ry, m-th real position of the target
B M Estimated positions (using traditional
WCL) of the target in vector form
B Estimated position forn-th location
m of target using traditional WCL
P Estimated position fon-th location
m of target using proposed WCL
P Estimated position of then-th position
s of target using static degree based WCL
P Estimated position of then-th position
md of target using dynamic degree based WCL
M Estimated positions of the target
Ps using static degree based WCL
in vector form
M Estimated positions of the target
Py using dynamic degree based WCL
in vector form
Te z-coordinate of estimated position
Ty z-coordinate of real position
Ye y-coordinate of estimated position
Yr y-coordinate of real position
Ze z-coordinate of estimated position
Zr z-coordinate of real position
LE., Localization error form-th position of target
ALE Average localization error
STD Standard deviation of localization error
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Fig. 1. Video Capsule Endoscope (VCE) localization apgnoac

degree ALFE of 6.27 mm with ST'D of 5.96 mm is possible
to reach. It is also observed that our proposed algorithms pe
form equally well with changes in sensor network dimension.

Il. SYSTEM OVERVIEW

We use the system set-up as shown in Fig. 1 to find
the location of the capsule using our proposed static and
dynamic degree based WCL algorithm. The system consists of
a capsule, eight receiver sensors, RSSI reader, and aziacali
tion system. The capsule transmits RF signal while tragelin
through the small intestine. We consider the dimension of
the small intestine a240mm x 280mm x 360mm. A
body surrounded wearable antenna array of eight RF reseiver
are used to receive the signal of the moving capsule for
localization. Hence, we consider the distance of the target
from the sensors to calculate weight of the sensors position
As RSSI is attenuated with varying distance of transmitter
and receiver due to the medium of propagation, we consider
RSSI as a measure of Tx-Rx separation. The sensors measure
the RSSI of the received signal and sent it to the central
localization system. The localization system process t88IR
and the known coordinate sets of the sensors to calculate
the three-dimensional3(D) positions of the capsule using
the proposed WCL based localization algorithm. WCL is a
localization algorithm which finds the average coordinatep
giving greater weights to closer points and lower weights to
farther points.

Figure 2 shows the architecture of the proposed system
which consists of a RF transmitter equipped in the capsule,
eight RF receiver modules (sensors), RSSI reader (micro-
controller), and the localization tool. The sensors arefigen
ured as RF receivers which receive the signal transmittad fr
the moving capsule transmitter and measures the receiged si
nal strength indicator (RSSI). The transmitter transnaio
signal using isotropic antenna radiating the same intemsit
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Fig. 2. Architecture for the proposed localization apptoac

TABLE I
THE PARAMETERS OF IMPLANT TO BODY SURFACE PATH
LOSS MODEL [22]

radio waves in all directions periodically. Micro-contieriunit
(MCU) is used to configure the transceiver modules (Tx or Rx)
and to read-write data. MCU is used as the RSSI reader which
reads the measured RSSI from the Rx and send it to the CPU.
Finally the localization tool calculates the Tx-Rx sepinat Implant to body surfacel Spr(do) | @ | orss
distance(d;) from the corresponding RSSI and then estimates Deep Tissue s 2:22 g:gi
the location using the proposed static and dynamic degree

based WCL algorithms. The localization tool is developed

using MATLAB. Most of the notations and symbols used in

the whole paper are listed in Table I.

normally distributed random variable as follows

I11. CHANNEL MODELLING FOR IN-BODY LOCALIZATION

d 2
A channel model is required in determining the propagatiothL(d) = Spr(do) + 10arlogyg <d_0) +50(0,0%s5), (4)
characteristics in a particular environment. By analyZing
signal propagation from Tx to Rx for a number of experimental

locations, a channel model is developed. The propagatian Chwhere,do is the reference distance and> d. Path loss ex-

acteristics depend upon the distance between the two agen onept,a h_eavny depgnds on the environment thrpugh which

; X I . RF signal is propagating. For free space, valuexa$é equal
the medium and the environment (buildings and other objecg 2 Eor human bodv. much hiaher value for the path loss
of propagation. In this paper, the Tx-Rx separation distaac ex c;nent is ex ecte&y,(o 9 )?s the random deviart)ion of
used to localize the capsule. The received poWg(d) and P P DY ORss) A

) . . the path loss around the mean with standard deviatjgsy in

the path lossP,(d) is related to the distancé through Friis . . SR
equation [33] as dB caused by different materials and antenna gain in diftere

directions. The signal propagated through the human body is

) PrG,G.\? deviated due to the shadowing effect of the non-homogeneous
Received PowerPr(d) = Am2d2L (@) medium. We use the above lognormal shadowing model to
4m2d? L model the signal propagation path loss between the sensor

and Path lossPp(d) = —5—, (2)  and the target VCE inside the human body. For a particular

where, Py is the transmitted power(, is the transmitter location of the VCE, we can calculate the path loss from the
ant?ar?r,laTaiiG ?s tr?es;eceiledpoovexz/ert :iIL i: th: ss ste?n measured received power of the sensors using Eq. 3. Then
9 " P 9 Y we can calculate distance by replacing the path loss in Eq. 4

1253 lia?]totrhn?ttkrlel?rteg tn?litrt)rgpailggtIIOETr(lz D, tﬁnld)\ Iis tt:‘e | if the signal parameters are known. The statistical path los
avelengin ot tne transmitied signal. The paih 10Ss 1S 186 19, 4e| for medical implant communication was developed by
of signal strength while it propagates through the mediu

) . X . Wie national institute of science and technology (NIST)hat t
Mathematically, it can be explained as the differenced(i) MICS band [22]. The parameters of implant to body surface

between the transmitted signal power and the received ISigBgth loss model are summarized in Table Il. The resolution of

POWer as their simulation system i8 mm. Deep tissue implant scenario
Path Loss = Transmitted power - Received Power. (ggnsiders endoscopy capsule applications for upper stomac
(95 mm below body surface) and lower stomachl§ mm
The lognormal shadowing model [34] can be used to modatlow body surface). Using Eq. 4, we can represent the signal
the path loss statistically at locatiahas a random and log- propagation path loss af. received signals forn possible
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Fig. 3. (a) Statistical path-loss model (deep-tissue imtptxenario); (b) Estimated and real distances.

positions of the capsule in matrix form as IV. TRADITIONAL WEIGHTED CENTROID LOCALIZATION
Spr(dy) Traditionally, WCL is a localization algorithm which finds
Spr(dz) the location of the target as weighted average of the sensors
: = position as
Spr(dm) Estimated position:
1 10logyo(di/do) 1 Z]\Ll(Wl mBi(x,y,2))
1 10logyo(da/do) 1 Spr(do) En(z,y,2) ===—x . (D
. 10. . o . (5) > im1 Wim
: : : Sp(0,0%4¢) o i th th i
1 10logyy(dm/dy) 1 RSS where,W; ., is the weight ofi*” sensor form** position of the

target. For traditional WCL, weight is inversely proport#
Using the path loss attenuation exponefis(do), @ and tg distance,

orss) of Table Il, we model the path loss for deep-tissue
implant scenario of human body fer possible positions of Wim = . (8)
the capsule using Eq. 5. Figure 3(a) shows the scattered path 2

loss for a range of Tx-Rx separation distahoem—800mm,
where the path loss is scattered around a mean. It is due to
the random deviation§5 (0, 0%¢g) which is caused by the We verify the localization accuracy using performance in-
non-homogeneous medium of propagation. Figure 3(b) shodiges such as.E, ALE, STD.

the distance estimated using Eq. 4 from scattered path lossLE at m—th location of capsule is the difference between
The distance cannot be calculated accurately using sedttesstimated and real positions and can be represented as,
path loss which in turn increases the localization error. As

we can see from Fig. 3(b) that the real distances are far LEm =V (Pn — Rn)?

different from the estimated distances. Thus, to reduce the = V(e — 2,2+ (Yo — yr)2 + (2 — 27)2, (9)
localization error related to the deviation, the deviatioost _ ) . ) )
have to be minimized. The random variatsie (0, 0%« <) has where,P?n is the esumgtgd position using proposed _algorlthm
a normal distribution with zero mean and standard deviati@fd f is the real position of the capsulex., y, z) is the

orss. Thus, we can model the mean or linearized path l0§8-0rdinate of the estimated position afd, y., z,) is the
co-ordinate of the real position.

V. PERFORMANCEINDICES

as below ‘
Spr(di)im 1 10logy,(ds /do) ALF is calculated as .
SPL(dQ)lin _ 1 101Og10(d2/d0) SPL(dO) ALE _ Zm:l LEm (10)
: =1. . o : M ’
Spr(dm)iin 1 101og;q(dm /do) where, M is the number of capsule positions considered to

(6) computeALE.
In Fig. 3(a), the solid line through the scattered path lossThe ST D is expressed as
best fits the collected data. The solid line depicts the mean
or linearized path loss which is obtained by minimizing the STD — \/ZM (LE,, — ALE)?

m=1
deviations using Eq. 6. i ; (11)



where, M is the number of capsule positions considered {85]. ExpandingE,,, into an Euler product [35], we obtain
computeSTD.
The normalized error%) is found as follows,

Hz 1(1+Zk 1#)

. ALE Em 9 ) =
Normalized erro(%) = =, (12 (.92 8
(dmam - dmvn) N Bi(z,y,z) -1
. : : - [Tz (1 - di)
whered,,, ... is the maximum range in x-y-z direction atdg;,, = . a7
is the minimum range in x-y-z direction. 8

Taking logarithm on Eq. 17 yields
V1. PROPOSEDLOCALIZATION ALGORITHM
In this paper, we propose two algorithms for localizing the

capsule using static and dynamic degree based WCL. We Pro; ., g (2,9, 2) =
pose optimal and sub-optimal methods of degree calculation 0810 Em{T: Y
In our proposed WCL approach, the distance of the sensor and
capsule (Tx-Rx) is used to calculate the weight of the sensdtow applying Merten’s prime number theorem [35] on Eg.
position. We raise the distance to a higher degree to consid8, we obtain the following Dirichlet series
the weight,I; ,,, of the sensors position at longer distances

-1
logy Hf\; (1 - B((JIgZ))
8

(18)

marginally lower and find the positioR,, using WCL as N P
1 logio [[;=; (1 - B((i,;I )) i, f(fn’;k)
Wim = (13) g - 5
(d%m) N Bi(zy,z)
2im1 Ta,, OO
Pp(®e,Ye,2e) = zzl(WlmB (i, Yi, 2i)) = 8 ’
> Yes Ze SN Wi (19)

>
N
Zzzl ((dl )9 Bi(wi, yi, Zv))

= = - , (14) WhereM is the main term and(1) is an error term.
2 i1 im)? Replacmgk ‘with g in Eq. 19, we obtain

where, g is the degree which may be static or dynamic and

B; is the fixed known position of the sensor nodes. The 3.7, Z:fras) Sl 2 o)

proposed two methods of localization using optimal and sub- 3 " = 3 : + ] (20)
optimal degree are shown in Algorithm 1 and Algorithm 2,

respectively. The detail steps of development of the algms o Egs. 7, 14 and 20, we can write

are explained in the following.

1 O(1)
A. Distance calculation g " Em + ] (21)
We calculate distance; ,, of the m*" position of target
from thei*" sensor using adaptively linearized path loss (E€quation 21 can be rewritten as

6)

Spr(dim)iin—SpL(d0)
dz’,m =dy x 10 10« . (15) P, =gE,, + g—Oél) (22)
B. Degree calculation Finally, ¢ can be approximated from Eq. 22 as
We propose the following two methods of degree calculation
using optimal and sub-optimal approach, respectively. P,
1) Optimal method: The proposed optimal method of de- g= E. (23)

gree calculation for both static and dynamic cases is based

on minimizing the mean square error (MSE). In traditional - .

WCL algorithm, the estimated position is as shown in E ._N_OV\_" _the probl_em of determining the optimal deggg;
7. Normalizing the weight of th& sensors, we can expresgmn"mzmg MSE is formulated as follows,

the estimated position of the capsule obtained from trawuki

WCL as Determine: Jopt

N 1 , M LE 2
iz, Bilw,y,2)) To Minimize: MSE = Zm:le (24)

Em(z,y,2) = 3 (16)

N : . , , N  Bi(a,y, . . . .
Sy ﬁ is a Riemanns’ zeta function and,_, % where,m is the number of locations anblE,,, is the localiza-

i,m

is a multiplicative Dirichlet series of the functioB;(z,y,z) tion error form!" position. Differentiating MSE with respect



to g, we find

Sensor 6 (520 ,-520 ,520)

dMSE) _ d Y LE, 20 520
dg  dg M
M
1 d 5004
- el Pm _ Rm 2 500
M zjl dg( g ) Sensor 8 (520,520,
m= Sensor 4 (-520,520 520)
2
_ Ly <2£V_1<Wi,m3i> e )
= N m N N
M m=1 dg Zi:l Wi,m I 7 Sensor 5 (520 ,-520 ,—520{ s
M ZN ;B ? -500
B i Z i i=1 \ (ds,m)9 ¢ R SepSor 1 (520 ,-520
M ' dg leil ﬁ m )
" : -
_ 2 f’: S (@ B) n
= — N —_ m x—axis 500 sensor 3 (-520 ,520 ,-520)
M m=1 2im1 ﬁ
d Eizl ((d, 1m)ng') Fig. 4. Simulation system including sensor array8ofeceiver and signal
d_ N - 1 . propagation model of small intestine.
9 Zi:l (di,m)9
(25) _ .
2) Sub-optimal method: The proposed sub-optimal meth-
Equating first derivative to zero yields ods for determining both static and dynamic degrees are
N ) presented below.
S (wr )
~ — Ry =0. (26) _ )
Sy ﬁ Satic sub-optimal degree
Equation 26 can be re;arran ed as We propose a method of computing static sub-optimal
q 9 degreeg,sop+ USiNg the logarithm of the maximum distance
Eij\il ( d,l _qBi) dma:r as
N (di, 1) = Rm (27) Gssopt = 1Og10(dm(l-’ﬂ)' (32)
it @
From Egs. 14 and 27, we can write
P, =Ry form=1,2,3--- M (28) Dynamic sub-optimal degree

The dynamic sub-optimal degree is calculated using the

ThL.JS’ th; mean Ioc.al|25;1t|on error oIIS lmlnllmum_ when Ithleecent updated location of the target. As the target capsule
estimated position using the proposed algorittita ) is equa transmitter moves through the Gl tract, the Tx-Rx sepamnatio

to the real pqsitions of the targe_ﬂl). By replacing the yalue distance also changes. We calculate the updated dynamic
of P,, asR,, into Eq. 23, the optimal value gfcan be written distanced; ,,, using Eq. 15 which is then used to calculate

as the sub-optimal degree. The proposed dynamic sub-optimal
g~ R_m (29) degreey sop: iS calculated as
-
Using the obtained value af in Eq. 29, we can calculate the dsopt = 1081 (d - ) ; (33)

static and dynamic degree as below. ]
where dpin < dim. In summary, the optimal methods

_ ) of degree calculation is dependent on the real positions of
Static optimal degree capsule. Whereas, the sub-optimal methods do not require to
Applying linear least square (LLS) regression of the estiknow the real positions as a prior. Since the dimension of the
mated and real positions, finally the static optimal degtgg: sensor network and the dimension of the region of interest
is obtained as (ROI) are fixed, the maximum covered randg.. and the
minimum distancel,,;,, are known values. Thus, it is realistic

_ T\—1p T
gsopt = (BE" )" RE". (30) to calculate the degree using sub-optimal methods.
Dynamic optimal degree C. Position estimation
We can consider the dynamic optimal degigg,: USiNg  This is the final step of position estimation using static and
the recent update of positions as dynamic degree based WCL. Here we estimate the position of

R, the capsule by replacing the value of the estimated degree in
g(loptm = E—, fOI’m:1,2,3,,M (31) Eq 14.
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TABLE IV

TABLE Il
REAL AND ESTIMATED POSITIONS USINGDYNAMIC DEGREE BASEDWCL

REAL AND ESTIMATED POSITIONS USINGSTATIC DEGREE BASEDWCL

- Estimated positions Estimated positions - — - — -
Real positions, . . . . " Estimated positions | Estimated positions using
Ry (zr, yr, 2r) “S'?Dg ‘():Fc)“myal Se)gree US'”QPSUEC'OP;m? )degree ;eazlxpozltloznsj using optimal degree sub-optimal degree
m €y €y ~e m €y €y e m T Ty ~T Pm(xe7ye7ze) Pm(CL'e,ye,Ze)
95, 30, 177 100.2, 33.2, 169.9 103.3, 34.2, 174.6
((87 > 22)) ((35.3 KRR 22.3)) ((87.7 LB 22.9)) (@5, 30, 177) (1015, 33.6, 171.8) (102.9, 33.9, 175.8)
0.9, 72.9,375)| (9.9, 71.8, 37.6) (10.2, 73.9, 38.7) (87, 31, 22) (86.2, 31.7, 22.5) (88.6, 324, 23.1)
(9.9, 72.9, 37.5) (10.1, 72.5, 37.9) (10.3, 74.6, 39)
(-56, 43, 107) (-57.2, 44.2, 105.2) (-58.9, 45.5, 108.2) (56, 43, 107) (57.6, 44.5, 105.9) (-59.1, 45.7, 109.1)
(-43, 109, -110) | (-45.5, 109.7, -110.6)] (-46.9, 112.8, -113.8) = : : - :
A1 51-150) G35 5153 45556157 2) (-43, 109, -110) | (-45.58, 109.78, -110.68] (-46.83, 113.34, -114.28)
O - 5, >4, - 9, 99.5, 19/ (41, 51, -160) (44.2, 55, -155.6) (44.8,55.5, -158.6)
(105, 129, -175)| (116.8, 139.1, -177) (120.4, 143.3, -182.1) (105, 129, -175) (114.6, 1365, -174) (118.6, 141.8, -181.5)

In next section, we will see the performances of the preéx. Performance of static degree based WCL

posed algorithms. We simulate the static degree based WCL algorithm using
both optimal and sub-optimal degree to verify and compage th
performance using a sensor networkl6f0mm x 1040mm x
VIl. SIMULATION AND RESULTS 1040mm dimension for2530 possible target positions inside
. . . . the small intestine. The information flow of the optimal and
In_th|s section, we simulate _the_ propose_d static and d%’l]b—optimal method of degree calculation using static ekegr
namic degree based VCE localization algorithms to evalua&?e shown as in Fig. 7 and Fig. 8, respectively. Figure 5 shows

possible to vahdate_: the_ pe_rformance using real human bo r seven sample target positions and compares the accuracy
we develop a3D) V|sua||zat_|on platform using MATLAB to .of the sub-optimal methods to the optimal. The results are
show the_results and to vgrlf_y the performance. The Slrmnat'summarized in Table Ill. As we can see from the results that
platform includes the statistics of the path loss model @‘p:iethe accuracy of the proposed sub-optimal methods comply to

tissue 'mP""?m to body surface scenario [22] to can|dek "SHe optimal benchmark accuracy and the estimated positions
characteristics of human body channel as shown in Eq. (6)'a > in good agreement with the real positions

also includes a small intestine model with its position mag a
a sensor array of eight receivers with their reference jposit )
as shown in Fig. 4. The sensors are placed at eight corferPerformance of dynamic degree based WCL

points of the sensor array. We simulate our proposed statidNe simulate dynamic degree based WCL using both optimal
and dynamic degree based algorithms for different dimensiand sub-optimal degree f@530 possible target positions in-
of the sensor network to localize the VCE in small intestingide the small intestine usiri@40mm x 1040mm x 1040mm

of 280mm x 240mm x 360mm dimension. The simulation dimension of the sensor network. The information flow of the
platform shows the estimated positions as well as the reblinamic degree based WCL using optimal and sub-optimal
positions in the same platform and evaluates the accuraiggree are shown in Fig. 7 and Fig. 9, respectively. The
using different performance indices as follows simulation results for seven sample positions are shown in
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TABLE V
ACCURACY OF DIFFERENT OPTIMIZATION METHODS FOR DIFFERENT IMENSION OF THE NETWORK

Average Localization ErrorALE, in mm) for traditional and proposed WCL

L : ! Static : ’ Dynamic
Sensor network Calibration Traditional Traditional Static opglmal sub-optimal Dynamic olptlmal sub-optimal
dimension method W= 1 W= 1 W = “oeopt W= _ 1 W= —gior W _ 1
in mm 30 ~ (SpLliin ~—d ~ d9ssopt — d9dsopt.
(i ) [30] PL) (Benchmark) (Profiosed) (Benchmark) (Proposed)
600 x 600 x 600 5.15 138.6 98.2 14.99 11.11 10.19 12.07
680 x 680 x 680 6.3 138.86 98.43 11.8 11.82 8.27 9.61
760 x 760 x 760 2.93 139.08 98.52 9.54 9.54 6.8 7.9
840 x 840 x 840 2.33 139.36 98.7 7.86 8.03 5.6 6.8
920 x 920 x 920 1.9 139.42 98.78 6.59 7.07 4.79 6.3
1000 x 1000 x 1000 1.58 139.57 98.84 5.6 6.6 4.1 6.1
1040 x 1040 x 1040 1.45 139.6 98.87 5.19 6.55 3.8 6.27
1080 x 1080 x 1080 1.33 139.7 98.89 4.82 6.59 3.54 6.46
1120 x 1120 x 1120 1.23 139.76 98.91 4.49 6.75 3.3 6.73
1200 x 1200 x 1200 1.06 139.87 98.94 3.92 7.32 2.89 7.45
1280 x 1280 x 1280 0.92 139.97 98.97 3.45 8.10 2.55 8.26
TABLE VI
COMPARISON OF LOCALIZATION ACCURACY
System Algorithm/ Inform.ation ALE STD Normalized | No. of Dimension
method basis error (%) sensors
Chandra et al. [25] LLS method L
RF localization and non LLS method Radio signal 10mm ) 14.14% 8 2D
Arshak and Linear approximation Linear
Adepoju [27] of RSSI and . 25 mm - 25% 3 2D
RF localization trilateration approximated RSS|
Mohammad et al. [28] Convex optimization TOA and signal
RF localization theory strength 15 mm 15 mm 12.21% 16 2D
Wang et al. [29] ! ’ ;
RF localization RSS Triangulation RSSI signal 48 mm - 16.29% 32 2D
Hany and ) ) . . .
; Adaptively linearized Linearized RSSI
Wahid [30] e 5.15mm | 3.5mm 1.16% 8 3D
RE localization LLS WCL and Real positions
Optimal static degree ) . .
P LLS based static Linearized RSSI
based RF localization degree optimal WCL | and Real positions 5.19mm | 4.18mm 1.1% 8 3D
(benchmark)
Sub-optimal static degree | Maximum range based
based RF localization Static degree Linearized RSSI | 6.55mm | 6.61mm 1.43% 8 3D
(proposed) sub-optimal WCL
Optimal dynamic degree Recent update ; :
based RF localization based dynamic degree ah'gesggf d oEitSic?rl1 s 3.8mm | 3.14mm 0.809% 8 3D
(benchmark) optimal WCL P
Sub-optimal dynamic degre¢ Recent update
based RF localization based dynamic degree Linearized RSSI | 6.27mm | 5.96 mm 1.32% 8 3D
(proposed) sub-optimal WCL
Fig. 6 and summarized in Table IV. As we can see that tleee presented and compared in Table I, IV and V which

accuracy of the proposed sub-optimal methods are very clasearly shows significant improvement using proposed cstati
the optimal benchmark accuracy and the estimated positicared dynamic degree based methods. It also shows that the

are in good agreement with the real positions. optimal benchmark accuracy is possible to be achieved using
our proposed sub-optimal methods (both static and dynamic)
C. Comparison The weight, W calculated using static and dynamic degree

We simulate the proposed algorithms and compare {ALe plotted as a function of distance in Fig. 10 and Fig. 11,

results for different dimension of network as shown in Table respectively. As we can see from Figs. 10 and 11 that using

. . . both methods, the lower distance sensors are more weighted
The results show that the calibration process [30] impreies . .
. . . than the higher distance sensors. We can also observe that
accuracy to certain level. However, as the calibration @sec

requires real positions to find the calibration co-efficjant the calculated weights using optimal and sub-optimal aegre

is not practically implementable. We also observe that tHEe very close to each other. Figure 12 and 13 shows the

localization accuracy is improved when a degree is appbed ?S;'Imiﬁgoﬂgsl:g?:s S?;J(?V;ntgrge;a?gis; t&%nsre?{)napsaef?r;h?j
the distance. The results of the proposed degree baseddseth6® P 9 y 9
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As we can observe from Figs. 12 and 13 that the positions
estimated using both optimal and sub-optimal degree ane ver
close to each other. It is also observed that the estimated
positions using proposed methods are in good agreement with
the real positions. Table V shows that the dynamic degree
based (both optimal and sub-optimal) methods improve the
localization accuracy (i.e., lowedLF) and Table VI shows
that it also reduces the standard deviation of error. Howeve
as the real positions are required to be known to calculate
the optimal degree, it is not practically implementableéhea

it is computed analytically to compare the performance of
sub-optimal method. The proposed sub-optimal methods are
realistic as they approach the benchmark accuracy withgut a
prior knowledge of real positions or any calibration pracas

in [30].

Table V also presents the performance of the proposed
localization algorithms for several dimension of sensot- ne
work. In each case, we observe that proposed methods perform
equally well. It is also to be noted from Table V that using
our proposed methods, the localization error decreasds wit
increase of dimension (x-y-z axis). With the increase of
dimension, the target’s location rationally approacheshi
center (0,0,0) of the network. As WCL finds the weighted
average of the sensors location, it can find the target'ditmca
more accurately when the target approaches to the center
of the network. The static sub-optimal method shows best
performance fot 040mm x 1040mm x 1040mm dimension of
the network, whereas dynamic sub-optimal method shows best
performance forl000mm x 1000mm x 1000mm dimension
of the network.

There are different RF localization algorithms based on
triangulation or other methods available in the literati2®]-

[29]. The mean localization error of those methods are withi
10 — 50 mm. Table VI compares the localization accuracy of
those methods in terms of different performance indices and
shows better performance of our proposed algorithms. As com



pared to other works, our proposed sub-optimal methods shigorithm 2 Static and dynamic degree based sub-optimal
improved localization accuracy without any prior knowledgWCL

of real positions. Input:Pr, RSSI,, do, dmaz, dmin, Bi(wi,yi, 2i)| Vi]
Output: P, Py
form=1, 2,---, M do

- VIII. CONCLUSION | | fori—1, 2.---. N do
In this paper, we have proposed static and dynamic degree  {% distance calculation using linearized path loss

based WCL algorithms for video endoscopic capsule local- Spr(dim)iin = Pr — RSSI;

ization while it trqvels through the small intestine. We &av Spr(dim)iin = Spr(do) + 10alogy, (dd)

proposed sub-optimal method of degree calculation for both SpL(ds.mtin~ SpL (d0) 0

static and dynamic cases. We have also analytically cordpute dim = do10 10a

the optimal value of the degree to set benchmark for the accu- ~ {% static sub-optimal degrge
racy of the proposed sub-optimal methods. We have developed  ssopt = 10810(dmaz)

a 3D visualization platform using MATLAB to simulate and {% dynamic sub-optimal degrge
evaluate the performance of the proposed localization-algo asopt,, = 10819(di,m — dmin)
rithms considering real characteristic of human body ckeann {% static sub-optimal weight
We have observed that optimal benchmark accuracy is pessibl Wiiim)ssope = W

to be achieved using our proposed sub-optimal methods even  {% dynamic sub-optimal weight

when we change the dimension of the sensor network. We have ~ W(; ),..,, = m

compared the performance of our proposed algorithms ta-othe end for

works to validate the performance and observed significant {% positions using static degree sub-optimal WCL

improvement over the present literature. P (e, yer 20) = S (Weim) s sope Bi (6,91,2) )
s \er e e S Wiiim)ssopt

{% positions using dynamic degree sub-optimal WCL
>y, (W(i,m)dwpt Bi(wi:yiyzi))

Algorithm 1 Static and dynamic degree based optimal WCL

Input: R, Pr, RSSI, dy, Bi(xi,yi,z)| Vi] Py (Te,Ye, 2e) = SN
i i=1 "V (i,m)gsopt
Output. E, PS, Pd end for
form=1,2,---, M do
fori=1,2,---, Ndo
{% distance calculation using linearized path loss
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