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Abstract— Wireless video capsule endoscope (VCE) is used to
diagnose lesions along digestive tracts. For proper diagnosis, it
is necessary to know the exact location of the lesions which
may be estimated by localizing the VCE. In this paper, we
propose a simple VCE localization approach using static and
dynamic degree based weighted centroid localization (WCL). In
our proposed approach, a sensor array of eight receivers is used
to estimate the distance of the moving capsule. The estimated
distance is then raised to a higher degree to reduce the weight
of the remote sensors marginally lower. We propose a sub-
optimal method of both static and dynamic degree calculation
using the estimated distances. We also analytically compute the
optimal values of the degree to set benchmark to compare the
performance of our proposed sub-optimal methods. We develop
a 3D simulation platform using MATLAB to show the results
and to verify the accuracy. We use indices named localization
error (LE), average localization error (ALE), standard deviation
(STD) and the normalized error to evaluate the performance.
Using static optimal degree, theALE is 5.19mm where ALE

of 6.55 mm is reachable using the sub-optimal method. For
dynamic degree,ALE using optimal degree is 3.8mm, while the
ALE using sub-optimal degree is 6.27mm. Thus, our proposed
algorithms approach benchmark accuracy even if we change
the dimension of the sensor network. The performance is also
compared to the existing algorithms in the literature whichshows
better performance using our proposed algorithms.

I. I NTRODUCTION

Video capsule endoscope (VCE) is used to send clear
images of abnormalities of the gastrointestinal (GI) tract.
Localization of the VCE is the process of determining its
unknown location while it travels through the GI tract. There
are very few algorithms available in the literature which
proposes system to localize the VCE. Some of those are based
on electromagnetic field strength and some on magnetic field
strength. Magnetic field strength based localization system
require extra space of the capsule. Our focus is to develop
an easy and cost effective VCE localization system based on
radio frequency (RF).

RF localization algorithms may be range-based [1] or range-
free [2]. In range-based schemes, nodes determine their loca-
tion based on distance or angle estimates to some reference
points. Such estimates may be acquired through different
methods, such as time of arrival (TOA) [3], time difference
of arrival (TDOA) [4], angle of arrival (AOA) [5], or re-
ceived signal strength indicator (RSSI) [6]. The most common
range-based algorithm is trilateration. Trilateration isa simple
positioning technique [7], which estimates the mobile nodes
location by intersection of the circles, each centered on the
anchor node position, with a radius equals to the estimated
distance between the mobile node and the anchor node.

Triangulation [8] is usually employed to convert the proximity
data into position information using the properties of triangles
to calculate distances. In [9], the authors propose a lightweight
range-free localization scheme using mobile anchor nodes
equipped with GPS which broadcasts its coordinates to the
sensor nodes as it moves through the network. Range-free
algorithms are popular due to its simplicity and robustness
to changes in wireless propagation properties. Centroid local-
ization (CL) [2] is a range-free RF-based localization method
in which the receiver localizes itself to the centroid of a set
of proximate reference points using a connectivity metric.In
CL, all points are assumed to be equally near the target node.
Weighted centroid localization (WCL) [10] aims to improve
localization accuracy by introducing greater weight to some
points which are more close than others and less weight to
the farther points. In the literature, there are several analysis
to improve the accuracy of WCL. Most of those are for indoor
applications. In [11]- [12], the algorithms are based on RSSI
which take the reciprocal of the sum and the sum of the
reciprocals of distances to calculate the weight. The authors
in [13] considered the sum of the reciprocal of the distances
and the side length of the triangle to calculate the weight. The
average localization error reported in [10] is7.42 m, in [11] is
10.14 m, in [12] is 2.54 m and in [13], it is2.33 m. In [14],
the authors used the node degree based WCL and in [15], the
authors proposed linear-regression-based WCL to improve the
performance of hop count localization using centralization and
calibration using linear regression and correction. The mean
localization error using [14]- [15] is close to1.38 m. In [16],
the authors replace the weight with the sum of the distance
reciprocals and use the correction factor as the degree of
distance. The average error reported is0.5125 m. In [17], the
authors raises the distance to different degree and for a specific
degree they proposes a position refinement by finding offline
calibration parameters. They have reported0.13 m mean error
using6.25×10−3 m resolution. In [18], the authors introduces
dynamic weighting factors that are solely dependent on the
correlation of the RSSI and reports mean error of5.3% or
0.053 m. For very short range, the authors in [19] propose
a real-time RSSI-based tracking system using an advanced
calibration method and filtering techniques in close-proximity
of up to1m. Their experiment shows distance estimation error
of 0.7 cm with standard deviation of4 cm for a single mea-
surement. However, the correction range algorithms in [15]-
[19] requires the prior knowledge of the original distance to
find the correction coefficient. In [20], the authors used weight-
compensated WCL algorithm based on RSSI (WCWCL-RSSI)
to estimate the position without any knowledge of the path loss



exponent and other prior information. The maximum average
error reported is2.81 m.

There are very few algorithms proposed in the literature to
localize the video endoscopic capsule. Most of the proposed
algorithms are range-based. In [21], [22], the authors work
on channel modeling for medical implant communication ser-
vices (MICS). In [21], the authors model the electromagnetic
(EM) propagation considering the absorption characterization
in GI parts of human body and its impact on propagation
model. The simulation results are in good agreement with
the finite-difference-time-domain (FDTD) measurements. In
[22], authors construct an immersive visualization environment
to characterize RF propagation from medical implants and
to model the statistical path loss for MICS channels. The
model is based on four near surface and two deep tissue
implant applications in a typical male human body. In [23], a
review on VCE localization literature is presented. In [24], the
paper presents a capsule endoscope localization system which
utilizes only RSSI to estimate the location using maximum
likelihood (ML) estimation and least squares (LS) method.
The simulation results show that the ML localization improves
the performance by80 percent, as compared with the LS
localization. In [25], the linear least square estimation is used
to estimate the initial position of the source based of phasedif-
ference of arrival followed by a non-linear least square method
to improve the localization accuracy. The reported position
estimation error is within1 cm in 2D case for homogeneous
and heterogeneous phantom. It is extended to3D case for
homogeneous cylinder case giving error within1 cm. In [26],
the authors proposes an algorithm using RFID of the antennas
to 3D coordinates of capsule using center of gravity location
estimation algorithm. The mean estimation error is2 cm as
reported. In [27], the authors discuss system and method of
determining the real-time location of an omni-directionalRF
system while the target transmitter is moving freely insidean
inaccessible organ using triangulation algorithm. They have
modelled the RF system and simulate the effects of organs on
signal quality at various distances. The average error is25%
as reported. Most of the reported methods [24]–[27] requires
TOA or RSS estimation. However, some unique challenges
exist for in-body localization due to the complex nature within
the human body. In [28], the authors directly estimate the loca-
tion of the capsule (as the emitter) without going through the
intermediate stage of TOA or signal strength estimation. They
have reported1.5− 2 cm average error using8− 16 sensors.
In [29], the authors investigate the potential accuracy limit
for RSS triangulation based capsule localization in the human
GI tract and reports average localization error of48 mm
using 32 sensors. In [30], the authors propose a RSSI based
video capsule endoscope (VCE) localization approach wherea
wearable antenna array of eight sensors is used to localize the
capsule using adaptively linearized linear least square -WCL
algorithm. They propose signal path loss linearization using
the extracted signal parameters considering minimum path loss
deviation. Then, the distance-dependent linearized path loss
is used to calculate the weight and the position using WCL.
Hence they go through a calibration process using the initial
estimated positions which needs prior knowledge of the real

positions of target which is practically impossible. The authors
report mean square error (MSE) of138.6 mm with standard
deviation61.14 mm before calibration and MSE of5.15 mm
with STD 3.5 mm after applying calibration, respectively
using600mm× 600mm× 600 mm dimension of the sensor
network of8 sensors.

Most of the reported VCE localization algorithms [24]–
[29] are based on trilateration or triangulation approach which
can compute location using distance and angle information
of triangle formed by three reference sensor nodes [31].
However, for more number of sensor nodes, it’s computational
complexity increases. The performance of the trilateration or
triangulation based methods in [24]–[29] also require very
precise knowledge on channel parameters, because its perfor-
mance decreases excessively with estimation errors in channel
[31]. As human body is a complex environment of experimen-
tation, a simple localization approach with less computational
complexity is required. WCL [10] is a simple localization
approach [20] which can estimate location using three or more
sensors with less computational complexity, less hardwarecost
and less communication overhead [20], [32]. It has attracted
a lot of interests [12]–[20] in outdoor environment becauseof
simplicity and robustness to changes in wireless propagation
properties. Though it is dependent on beacon numbers and
placements, the accuracy can be significantly improved using
more sensors [31]. As human body is extremely heterogeneous
media, the channel suffers severe multipath propagation and
heavy shadow fading due to organs of different electrical
parameters [22], [24]. WCL is much more robust against errors
in the estimated channel model parameters [20], [31]. Thus,for
a complex environment as human body, WCL is an appropriate
choice for VCE localization.

In this paper, we propose two algorithms of video endo-
scopic capsule localization using static and dynamic degree
based WCL. We propose a sub-optimal method of degree
calculation for static and dynamic cases. As the received
signal is scattered due to the random shadowing and multi-
path propagation effects of non-homogeneous environment,
we linearize the path loss considering minimum path loss
deviations. The distance is then calculated using the linearized
path loss. The calculated distance is raised to a higher degree
to decrease the weight of the higher distance sensors rationally
and to calculate the weight. The static sub-optimal degree is
calculated using the maximum distance covered by the sensors
and the dynamic sub-optimal degree is calculated using the
difference of estimated distance to a reference distance. We
also analytically compute the optimal values for the staticand
dynamic degrees and set the values as the benchmark accuracy.
We develop a simulation tool using MATLAB to verify the
accuracy of our proposed static and dynamic degree based
algorithms using different dimension of the sensor network.
We observe that using our proposed optimal static degree, an
average localization error (ALE) of 5.19 mm with standard
deviation (STD) of 4.18 mm is reachable, where using the
suboptimal static degree, we can achieveALE of 6.55 mm
with STD of 6.61 mm. Again, using the dynamic degree, the
optimal WCL accuracy improves significantly withALE of
3.8 mm andSTD of 3.14 mm. Using sub-optimal dynamic



TABLE I

NOTATIONS

M
No. of total positions of the target
(1-2530 for our simulation system)

N
No. of sensors used to localize the capsule

which is 8 in our proposed algorithm
Tx Transmitter
Rx Receiver
PT Capsule transmitted power indB

RSSI
Matrix (N ×M ) containing

the received signal indB

RSSIi,m
Received signal strength atith sensor

from mth position of the target

di,m
Distance of thei-th sensor and target for

mth position of the target
dmax Maximum distance of the target and sensor
dmin Minimum distance of the target and sensor

SPL(d0)
Path loss at reference distanced0 of
the target which is less thandi,m

SD(0, σ2
RSS

)
Random variable with zero mean

and standard deviationσRSS

α Path loss exponent
σRSS Standard deviation of the random variable

SPL(di,m)lin
Mean or linearized path loss ofi-th

sensor form-th position of the target

Wi,m
Weight of thei-th sensor

for m-th position of the target
W(i,m)sopt Weight using Static optimal degree
W(i,m)ssopt Weight using Static sub-optimal degree
W(i,m)dopt

Weight using Dynamic optima degree

W(i,m)dsopt
Weight using Dynamic sub-optimal degree

g Degree of distance
gsopt Static optimal degree
gssopt Static sub-optimal degree
gdopt Dynamic optimal degree
gdsopt Dynamic sub-optimal degree
Bi The i-th sensor’s position
xi i-th sensor’sx-coordinate
yi i-th sensor’sy-coordinate
zi i-th sensor’sz-coordinate
R M Real positions of the target in vector form
Rm m-th real position of the target

E
M Estimated positions (using traditional

WCL) of the target in vector form

Em
Estimated position form-th location

of target using traditional WCL

Pm
Estimated position form-th location

of target using proposed WCL

Pms

Estimated position of them-th position
of target using static degree based WCL

Pmd

Estimated position of them-th position
of target using dynamic degree based WCL

Ps

M Estimated positions of the target
using static degree based WCL

in vector form

Pd

M Estimated positions of the target
using dynamic degree based WCL

in vector form
xe x-coordinate of estimated position
xr x-coordinate of real position
ye y-coordinate of estimated position
yr y-coordinate of real position
ze z-coordinate of estimated position
zr z-coordinate of real position

LEm Localization error form-th position of target
ALE Average localization error
STD Standard deviation of localization error

Fig. 1. Video Capsule Endoscope (VCE) localization approach.

degree,ALE of 6.27 mm with STD of 5.96 mm is possible
to reach. It is also observed that our proposed algorithms per-
form equally well with changes in sensor network dimension.

II. SYSTEM OVERVIEW

We use the system set-up as shown in Fig. 1 to find
the location of the capsule using our proposed static and
dynamic degree based WCL algorithm. The system consists of
a capsule, eight receiver sensors, RSSI reader, and a localiza-
tion system. The capsule transmits RF signal while traveling
through the small intestine. We consider the dimension of
the small intestine as240mm × 280mm × 360mm. A
body surrounded wearable antenna array of eight RF receivers
are used to receive the signal of the moving capsule for
localization. Hence, we consider the distance of the target
from the sensors to calculate weight of the sensors position.
As RSSI is attenuated with varying distance of transmitter
and receiver due to the medium of propagation, we consider
RSSI as a measure of Tx-Rx separation. The sensors measure
the RSSI of the received signal and sent it to the central
localization system. The localization system process the RSSI
and the known coordinate sets of the sensors to calculate
the three-dimensional (3D) positions of the capsule using
the proposed WCL based localization algorithm. WCL is a
localization algorithm which finds the average coordinate point
giving greater weights to closer points and lower weights to
farther points.

Figure 2 shows the architecture of the proposed system
which consists of a RF transmitter equipped in the capsule,
eight RF receiver modules (sensors), RSSI reader (micro-
controller), and the localization tool. The sensors are config-
ured as RF receivers which receive the signal transmitted from
the moving capsule transmitter and measures the received sig-
nal strength indicator (RSSI). The transmitter transmits radio
signal using isotropic antenna radiating the same intensity of



Fig. 2. Architecture for the proposed localization approach.

radio waves in all directions periodically. Micro-controller unit
(MCU) is used to configure the transceiver modules (Tx or Rx)
and to read-write data. MCU is used as the RSSI reader which
reads the measured RSSI from the Rx and send it to the CPU.
Finally the localization tool calculates the Tx-Rx separation
distance(di) from the corresponding RSSI and then estimates
the location using the proposed static and dynamic degree
based WCL algorithms. The localization tool is developed
using MATLAB. Most of the notations and symbols used in
the whole paper are listed in Table I.

III. C HANNEL MODELLING FOR IN-BODY LOCALIZATION

A channel model is required in determining the propagation
characteristics in a particular environment. By analyzingthe
signal propagation from Tx to Rx for a number of experimental
locations, a channel model is developed. The propagation char-
acteristics depend upon the distance between the two antennas,
the medium and the environment (buildings and other objects)
of propagation. In this paper, the Tx-Rx separation distance is
used to localize the capsule. The received powerPR(d) and
the path lossPL(d) is related to the distanced through Friis
equation [33] as

Received Power,PR(d) =
PTGtGrλ

2

4π2d2L
(1)

and Path loss,PL(d) =
4π2d2L

λ2
, (2)

where, PT is the transmitted power,Gt is the transmitter
antenna gain,Gr is the received power gain,L is the system
loss factor not related to propagation (L ≥ 1), andλ is the
wavelength of the transmitted signal. The path loss is the loss
of signal strength while it propagates through the medium.
Mathematically, it can be explained as the difference (indB)
between the transmitted signal power and the received signal
power as

Path Loss = Transmitted power - Received Power. (3)

The lognormal shadowing model [34] can be used to model
the path loss statistically at locationd as a random and log-

TABLE II

THE PARAMETERS OF IMPLANT TO BODY SURFACE PATH

LOSS MODEL [22]

Implant to body surface SPL(d0) α σRSS

Deep-Tissue 47.14 4.26 7.85
Near Surface 49.81 4.22 6.81

normally distributed random variable as follows

SPL(d) = SPL(d0) + 10α log10

(

d

d0

)

+ SD(0, σ2
RSS), (4)

where,d0 is the reference distance andd ≥ d0. Path loss ex-
ponent,α heavily depends on the environment through which
RF signal is propagating. For free space, value ofα is equal
to 2. For human body, much higher value for the path loss
exponent is expected.SD(0, σ2

RSS) is the random deviation of
the path loss around the mean with standard deviationσRSS in
dB caused by different materials and antenna gain in different
directions. The signal propagated through the human body is
deviated due to the shadowing effect of the non-homogeneous
medium. We use the above lognormal shadowing model to
model the signal propagation path loss between the sensor
and the target VCE inside the human body. For a particular
location of the VCE, we can calculate the path loss from the
measured received power of the sensors using Eq. 3. Then
we can calculate distance by replacing the path loss in Eq. 4
if the signal parameters are known. The statistical path loss
model for medical implant communication was developed by
the national institute of science and technology (NIST) at the
MICS band [22]. The parameters of implant to body surface
path loss model are summarized in Table II. The resolution of
their simulation system is2 mm. Deep tissue implant scenario
considers endoscopy capsule applications for upper stomach
(95 mm below body surface) and lower stomach (118 mm
below body surface). Using Eq. 4, we can represent the signal
propagation path loss ofm received signals form possible
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Fig. 3. (a) Statistical path-loss model (deep-tissue implant scenario); (b) Estimated and real distances.

positions of the capsule in matrix form as










SPL(d1)
SPL(d2)

...
SPL(dm)











=











1 10 log10(d1/d0) 1
1 10 log10(d2/d0) 1
...

...
...

1 10 log10(dm/d0) 1















SPL(d0)
α

SD(0, σ2
RSS)



 . (5)

Using the path loss attenuation exponents(SPL(d0), α and
σRSS) of Table II, we model the path loss for deep-tissue
implant scenario of human body form possible positions of
the capsule using Eq. 5. Figure 3(a) shows the scattered path
loss for a range of Tx-Rx separation distance50mm−800mm,
where the path loss is scattered around a mean. It is due to
the random deviationsSD(0, σ2

RSS) which is caused by the
non-homogeneous medium of propagation. Figure 3(b) shows
the distance estimated using Eq. 4 from scattered path loss.
The distance cannot be calculated accurately using scattered
path loss which in turn increases the localization error. As
we can see from Fig. 3(b) that the real distances are far
different from the estimated distances. Thus, to reduce the
localization error related to the deviation, the deviationmust
have to be minimized. The random variableSD(0, σ2

RSS) has
a normal distribution with zero mean and standard deviation
σRSS . Thus, we can model the mean or linearized path loss
as below










SPL(d1)lin
SPL(d2)lin

...
SPL(dm)lin











=











1 10 log10(d1/d0)
1 10 log10(d2/d0)
...

...
1 10 log10(dm/d0)











(

SPL(d0)
α

)

.

(6)
In Fig. 3(a), the solid line through the scattered path loss
best fits the collected data. The solid line depicts the mean
or linearized path loss which is obtained by minimizing the
deviations using Eq. 6.

IV. T RADITIONAL WEIGHTED CENTROID LOCALIZATION

Traditionally, WCL is a localization algorithm which finds
the location of the target as weighted average of the sensors
position as

Estimated position:

Em(x, y, z) =

∑N

i=1(Wi,mBi(x, y, z))
∑N

i=1 Wi,m

, (7)

where,Wi,m is the weight ofith sensor formth position of the
target. For traditional WCL, weight is inversely proportional
to distance,

Wi,m =
1

di,m
. (8)

V. PERFORMANCE INDICES

We verify the localization accuracy using performance in-
dices such asLE, ALE, STD.
LE at m−th location of capsule is the difference between

estimated and real positions and can be represented as,

LEm =
√

(Pm −Rm)2

=
√

(xe − xr)2 + (ye − yr)2 + (ze − zr)2, (9)

where,Pm is the estimated position using proposed algorithm
andRm is the real position of the capsule.(xe, ye, ze) is the
co-ordinate of the estimated position and(xr , yr, zr) is the
co-ordinate of the real position.
ALE is calculated as

ALE =

∑M

m=1 LEm

M
, (10)

where,M is the number of capsule positions considered to
computeALE.

TheSTD is expressed as

STD =

√

∑M

m=1 (LEm −ALE)2

M
, (11)



where,M is the number of capsule positions considered to
computeSTD.

The normalized error (%) is found as follows,

Normalized error(%) =
ALE

√

(dmax − dmin)2
, (12)

wheredmax is the maximum range in x-y-z direction anddmin

is the minimum range in x-y-z direction.

VI. PROPOSEDLOCALIZATION ALGORITHM

In this paper, we propose two algorithms for localizing the
capsule using static and dynamic degree based WCL. We pro-
pose optimal and sub-optimal methods of degree calculation.
In our proposed WCL approach, the distance of the sensor and
capsule (Tx-Rx) is used to calculate the weight of the sensors
position. We raise the distance to a higher degree to consider
the weight,Wi,m of the sensors position at longer distances
marginally lower and find the positionPm using WCL as

Wi,m =
1

(di,m)g
, (13)

Pm(xe, ye, ze) =

∑N

i=1(Wi,mBi(xi, yi, zi))
∑N

i=1 Wi,m

=

∑N

i=1

(

1
(di,m)g Bi(xi, yi, zi)

)

∑N

i=1
1

(di,m)g

, (14)

where,g is the degree which may be static or dynamic and
Bi is the fixed known position of the sensor nodes. The
proposed two methods of localization using optimal and sub-
optimal degree are shown in Algorithm 1 and Algorithm 2,
respectively. The detail steps of development of the algorithms
are explained in the following.

A. Distance calculation

We calculate distancedi,m of the mth position of target
from the ith sensor using adaptively linearized path loss (Eq.
6)

di,m = d0 × 10
SPL(di,m)lin−SPL(d0)

10α . (15)

B. Degree calculation

We propose the following two methods of degree calculation
using optimal and sub-optimal approach, respectively.

1) Optimal method: The proposed optimal method of de-
gree calculation for both static and dynamic cases is based
on minimizing the mean square error (MSE). In traditional
WCL algorithm, the estimated position is as shown in Eq.
7. Normalizing the weight of the8 sensors, we can express
the estimated position of the capsule obtained from traditional
WCL as

Em(x, y, z) =

∑N

i=1(
1

di,m
Bi(x, y, z))

8
. (16)

∑N

i=1
1

di,m
is a Riemanns’ zeta function and

∑N

i=1
Bi(x,y,z)

di,m

is a multiplicative Dirichlet series of the functionBi(x, y, z)

[35]. ExpandingEm into an Euler product [35], we obtain

Em(x, y, z) =

∏N

i=1

(

1 +
∑

∞

k=1
Bi(x,y,z)
(di,m)k

)

8

=

∏N

i=1

(

1− Bi(x,y,z)
di,m

)

−1

8
. (17)

Taking logarithm on Eq. 17 yields

log10 Em(x, y, z) =
log10

∏N

i=1

(

1− Bi(x,y,z)
di,m

)

−1

8
. (18)

Now applying Merten’s prime number theorem [35] on Eq.
18, we obtain the following Dirichlet series

log10
∏N

i=1

(

1− Bi(x,y,z)
di,m

)

−1

8
=

∑N
i=1

∑

∞

k=1
Bi(x,y,z)

k(di,m)k

8

=

∑N
i=1

Bi(x,y,z)

di,m
+O(1)

8 ,

(19)

where Bi(x,y,z)
di,m

is the main term andO(1) is an error term.
Replacingk with g in Eq. 19, we obtain

∑N

i=1
Bi(x,y,z)
g(di,m)g

8
=

∑N

i=1
Bi(x,y,z)

di,m

8
+

O(1)

8
. (20)

From Eqs. 7, 14 and 20, we can write

1

g
Pm = Em +

O(1)

8
. (21)

Equation 21 can be rewritten as

Pm = gEm + g
O(1)

8
. (22)

Finally, g can be approximated from Eq. 22 as

g ≈
Pm

Em

. (23)

Now, the problem of determining the optimal degreegopt
minimizing MSE is formulated as follows,

Determine: gopt

To Minimize: MSE =

∑M

m=1 LEm
2

M
(24)

where,m is the number of locations andLEm is the localiza-
tion error formth position. Differentiating MSE with respect



to g, we find

d(MSE)

dg
=

d

dg

∑M

m=1 LEm
2

M

=
1

M

M
∑

m=1

d

dg
(Pm −Rm)2

=
1

M

M
∑

m=1

d

dg

(

∑N

i=1(Wi,mBi)
∑N

i=1 Wi,m

− Rm

)2

=
1

M

M
∑

m=1

d

dg





∑N

i=1

(

1
(di,m)g Bi

)

∑N

i=1
1

(di,m)g

−Rm





2

=
2

M

M
∑

m=1





∑N

i=1

(

1
(di,m)gBi

)

∑N

i=1
1

(di,m)g

−Rm





d

dg





∑N

i=1

(

1
(di,m)gBi

)

∑N

i=1
1

(di,m)g



 .

(25)

Equating first derivative to zero yields
∑N

i=1

(

1
(di,m)g Bi

)

∑N

i=1
1

(di,m)g

−Rm = 0. (26)

Equation 26 can be rearranged as
∑N

i=1

(

1
(di,m)g Bi

)

∑N

i=1
1

(di,m)g

= Rm. (27)

From Eqs. 14 and 27, we can write

Pm = Rm; for m = 1, 2, 3, · · ·,M (28)

Thus, the mean localization error is minimum when the
estimated position using the proposed algorithm (Pm) is equal
to the real positions of the target (Rm). By replacing the value
of Pm asRm into Eq. 23, the optimal value ofg can be written
as

g ≈
Rm

Em

. (29)

Using the obtained value ofg in Eq. 29, we can calculate the
static and dynamic degree as below.

Static optimal degree

Applying linear least square (LLS) regression of the esti-
mated and real positions, finally the static optimal degreegsopt
is obtained as

gsopt = (EET )−1RET . (30)

Dynamic optimal degree

We can consider the dynamic optimal degreegdopt using
the recent update of positions as

gdoptm =
Rm

Em

; for m = 1, 2, 3, · · ·,M. (31)
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Fig. 4. Simulation system including sensor array of8 receiver and signal
propagation model of small intestine.

2) Sub-optimal method: The proposed sub-optimal meth-
ods for determining both static and dynamic degrees are
presented below.

Static sub-optimal degree

We propose a method of computing static sub-optimal
degreegssopt using the logarithm of the maximum distance
dmax as

gssopt = log10(dmax). (32)

Dynamic sub-optimal degree

The dynamic sub-optimal degree is calculated using the
recent updated location of the target. As the target capsule
transmitter moves through the GI tract, the Tx-Rx separation
distance also changes. We calculate the updated dynamic
distancedi,m using Eq. 15 which is then used to calculate
the sub-optimal degree. The proposed dynamic sub-optimal
degreegdsopt is calculated as

gdsopt = log10

(

di,m
dmin

)

, (33)

where dmin < di,m. In summary, the optimal methods
of degree calculation is dependent on the real positions of
capsule. Whereas, the sub-optimal methods do not require to
know the real positions as a prior. Since the dimension of the
sensor network and the dimension of the region of interest
(ROI) are fixed, the maximum covered rangedmax and the
minimum distancedmin are known values. Thus, it is realistic
to calculate the degree using sub-optimal methods.

C. Position estimation

This is the final step of position estimation using static and
dynamic degree based WCL. Here we estimate the position of
the capsule by replacing the value of the estimated degree in
Eq. 14.
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Fig. 5. Simulation results using static degree based WCL.

TABLE III

REAL AND ESTIMATED POSITIONS USINGSTATIC DEGREE BASEDWCL

Real positions,
Rm(xr , yr , zr)

Estimated positions
using optimal degree

Pm(xe, ye, ze)

Estimated positions
using sub-optimal degree

Pm(xe, ye, ze)
(95, 30, 177) (100.2, 33.2, 169.9) (103.3, 34.2, 174.6)
(87, 31, 22) (85.3, 31.3, 22.3) (87.7, 32.2, 22.9)

(9.9, 72.9, 37.5) (9.9, 71.8, 37.6) (10.2, 73.9, 38.7)
(-56, 43, 107) (-57.2, 44.2, 105.2) (-58.9, 45.5, 108.2)

(-43, 109, -110) (-45.5, 109.7, -110.6) (-46.9, 112.8, -113.8)
(41, 51, -160) (43.6, 54, -153) (44.9, 55.6, -157.2)

(105, 129, -175) (116.8, 139.1, -177) (120.4, 143.3, -182.1)

In next section, we will see the performances of the pro-
posed algorithms.

VII. S IMULATION AND RESULTS

In this section, we simulate the proposed static and dy-
namic degree based VCE localization algorithms to evaluate
the performance and to compare the accuracy. As it is not
possible to validate the performance using real human body,
we develop a3D visualization platform using MATLAB to
show the results and to verify the performance. The simulation
platform includes the statistics of the path loss model of deep
tissue implant to body surface scenario [22] to consider real
characteristics of human body channel as shown in Eq. (6). It
also includes a small intestine model with its position map and
a sensor array of eight receivers with their reference positions
as shown in Fig. 4. The sensors are placed at eight corner
points of the sensor array. We simulate our proposed static
and dynamic degree based algorithms for different dimension
of the sensor network to localize the VCE in small intestine
of 280mm × 240mm × 360mm dimension. The simulation
platform shows the estimated positions as well as the real
positions in the same platform and evaluates the accuracy
using different performance indices as follows
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Fig. 6. Simulation results using dynamic degree based WCL.

TABLE IV

REAL AND ESTIMATED POSITIONS USINGDYNAMIC DEGREE BASEDWCL

Real positions,
Rm(xr, yr, zr)

Estimated positions
using optimal degree

Pm(xe, ye, ze)

Estimated positions using
sub-optimal degree
Pm(xe, ye, ze)

(95, 30, 177) (101.5, 33.6, 171.8) (102.9, 33.9, 175.8)
(87, 31, 22) (86.2, 31.7, 22.5) ( 88.6, 32.4, 23.1)

(9.9, 72.9, 37.5) (10.1, 72.5, 37.9) (10.3, 74.6, 39)
(-56, 43, 107) (-57.6, 44.5, 105.9) ( -59.1, 45.7, 109.1)

(-43, 109, -110) (-45.58, 109.78, -110.68) (-46.83, 113.34, -114.28)
(41, 51, -160) ( 44.4, 55, -155.6) (44.8, 55.5, -158.6)

(105, 129, -175) (114.6, 136.5, -174) (118.6, 141.8, -181.5)

A. Performance of static degree based WCL

We simulate the static degree based WCL algorithm using
both optimal and sub-optimal degree to verify and compare the
performance using a sensor network of1040mm×1040mm×
1040mm dimension for2530 possible target positions inside
the small intestine. The information flow of the optimal and
sub-optimal method of degree calculation using static degree
are shown as in Fig. 7 and Fig. 8, respectively. Figure 5 shows
the simulation results of the proposed static degree based WCL
for seven sample target positions and compares the accuracy
of the sub-optimal methods to the optimal. The results are
summarized in Table III. As we can see from the results that
the accuracy of the proposed sub-optimal methods comply to
the optimal benchmark accuracy and the estimated positions
are in good agreement with the real positions.

B. Performance of dynamic degree based WCL

We simulate dynamic degree based WCL using both optimal
and sub-optimal degree for2530 possible target positions in-
side the small intestine using1040mm×1040mm×1040mm
dimension of the sensor network. The information flow of the
dynamic degree based WCL using optimal and sub-optimal
degree are shown in Fig. 7 and Fig. 9, respectively. The
simulation results for seven sample positions are shown in



Fig. 7. Information flow of optimal degree (both static and dynamic) based WCL.

Fig. 8. Information flow of sub-optimal static degree based WCL.

Fig. 9. Information flow of sub-optimal dynamic degree basedWCL.



TABLE V

ACCURACY OF DIFFERENT OPTIMIZATION METHODS FOR DIFFERENT DIMENSION OF THE NETWORK

Average Localization Error (ALE, in mm) for traditional and proposed WCL

Sensor network
dimension
(in mm)

Calibration
method

[30]

Traditional
W = 1

(SPL)lin

Traditional
W = 1

d

Static optimal
W = 1

d
gsopt

(Benchmark)

Static
sub-optimal

W = 1
d
gssopt

(Proposed)

Dynamic optimal
W = 1

d
gdopt

(Benchmark)

Dynamic
sub-optimal

W = 1
d
gdsopt

(Proposed)
600× 600× 600 5.15 138.6 98.2 14.99 11.11 10.19 12.07
680× 680× 680 6.3 138.86 98.43 11.8 11.82 8.27 9.61
760× 760× 760 2.93 139.08 98.52 9.54 9.54 6.8 7.9
840× 840× 840 2.33 139.36 98.7 7.86 8.03 5.6 6.8
920× 920× 920 1.9 139.42 98.78 6.59 7.07 4.79 6.3

1000× 1000 × 1000 1.58 139.57 98.84 5.6 6.6 4.1 6.1
1040× 1040 × 1040 1.45 139.6 98.87 5.19 6.55 3.8 6.27
1080× 1080 × 1080 1.33 139.7 98.89 4.82 6.59 3.54 6.46
1120× 1120 × 1120 1.23 139.76 98.91 4.49 6.75 3.3 6.73
1200× 1200 × 1200 1.06 139.87 98.94 3.92 7.32 2.89 7.45
1280× 1280 × 1280 0.92 139.97 98.97 3.45 8.10 2.55 8.26

TABLE VI

COMPARISON OF LOCALIZATION ACCURACY

System
Algorithm/
method

Information

basis
ALE STD

Normalized

error (%)
No. of
sensors

Dimension

Chandra et al. [25]
RF localization

LLS method
and non LLS method

Radio signal 10 mm - 14.14% 8 2D

Arshak and
Adepoju [27]

RF localization

Linear approximation
of RSSI and
trilateration

Linear
approximated RSSI 25 mm - 25% 3 2D

Mohammad et al. [28]
RF localization

Convex optimization
theory

TOA and signal
strength 15 mm 15 mm 12.21% 16 2D

Wang et al. [29]
RF localization

RSS Triangulation RSSI signal 48 mm - 16.25% 32 2D

Hany and
Wahid [30]

RF localization

Adaptively linearized
LLS WCL

Linearized RSSI
and Real positions 5.15mm 3.5 mm 1.16% 8 3D

Optimal static degree
based RF localization

(benchmark)

LLS based static
degree optimal WCL

Linearized RSSI
and Real positions 5.19mm 4.18mm 1.1% 8 3D

Sub-optimal static degree
based RF localization

(proposed)

Maximum range based
Static degree

sub-optimal WCL
Linearized RSSI 6.55mm 6.61mm 1.43% 8 3D

Optimal dynamic degree
based RF localization

(benchmark)

Recent update
based dynamic degree

optimal WCL

Linearized RSSI
and Real positions 3.8 mm 3.14mm 0.805% 8 3D

Sub-optimal dynamic degree
based RF localization

(proposed)

Recent update
based dynamic degree

sub-optimal WCL
Linearized RSSI 6.27mm 5.96mm 1.32% 8 3D

Fig. 6 and summarized in Table IV. As we can see that the
accuracy of the proposed sub-optimal methods are very close
the optimal benchmark accuracy and the estimated positions
are in good agreement with the real positions.

C. Comparison

We simulate the proposed algorithms and compare the
results for different dimension of network as shown in TableV.
The results show that the calibration process [30] improvesthe
accuracy to certain level. However, as the calibration process
requires real positions to find the calibration co-efficient, it
is not practically implementable. We also observe that the
localization accuracy is improved when a degree is applied to
the distance. The results of the proposed degree based methods

are presented and compared in Table III, IV and V which
clearly shows significant improvement using proposed static
and dynamic degree based methods. It also shows that the
optimal benchmark accuracy is possible to be achieved using
our proposed sub-optimal methods (both static and dynamic).
The weight,W calculated using static and dynamic degree
are plotted as a function of distance in Fig. 10 and Fig. 11,
respectively. As we can see from Figs. 10 and 11 that using
both methods, the lower distance sensors are more weighted
than the higher distance sensors. We can also observe that
the calculated weights using optimal and sub-optimal degree
are very close to each other. Figure 12 and 13 shows the
estimated positions of few target positions compared to the
real positions using static and dynamic degree based methods.
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Fig. 10. Static degree based Weight as a function of Distance.
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Fig. 11. Dynamic degree based Weight as a function of Distance.
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Fig. 12. Comparison of the estimated and real positions for static degree
based WCL.
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Fig. 13. Comparison of the estimated and real positions for dynamic degree
based WCL.

As we can observe from Figs. 12 and 13 that the positions
estimated using both optimal and sub-optimal degree are very
close to each other. It is also observed that the estimated
positions using proposed methods are in good agreement with
the real positions. Table V shows that the dynamic degree
based (both optimal and sub-optimal) methods improve the
localization accuracy (i.e., lowerALE) and Table VI shows
that it also reduces the standard deviation of error. However,
as the real positions are required to be known to calculate
the optimal degree, it is not practically implementable, rather
it is computed analytically to compare the performance of
sub-optimal method. The proposed sub-optimal methods are
realistic as they approach the benchmark accuracy without any
prior knowledge of real positions or any calibration process as
in [30].

Table V also presents the performance of the proposed
localization algorithms for several dimension of sensor net-
work. In each case, we observe that proposed methods perform
equally well. It is also to be noted from Table V that using
our proposed methods, the localization error decreases with
increase of dimension (x-y-z axis). With the increase of
dimension, the target’s location rationally approaches tothe
center (0,0,0) of the network. As WCL finds the weighted
average of the sensors location, it can find the target’s location
more accurately when the target approaches to the center
of the network. The static sub-optimal method shows best
performance for1040mm×1040mm×1040mm dimension of
the network, whereas dynamic sub-optimal method shows best
performance for1000mm× 1000mm× 1000mm dimension
of the network.

There are different RF localization algorithms based on
triangulation or other methods available in the literature[25]-
[29]. The mean localization error of those methods are within
10− 50 mm. Table VI compares the localization accuracy of
those methods in terms of different performance indices and
shows better performance of our proposed algorithms. As com-



pared to other works, our proposed sub-optimal methods show
improved localization accuracy without any prior knowledge
of real positions.

VIII. C ONCLUSION

In this paper, we have proposed static and dynamic degree
based WCL algorithms for video endoscopic capsule local-
ization while it travels through the small intestine. We have
proposed sub-optimal method of degree calculation for both
static and dynamic cases. We have also analytically computed
the optimal value of the degree to set benchmark for the accu-
racy of the proposed sub-optimal methods. We have developed
a 3D visualization platform using MATLAB to simulate and
evaluate the performance of the proposed localization algo-
rithms considering real characteristic of human body channel.
We have observed that optimal benchmark accuracy is possible
to be achieved using our proposed sub-optimal methods even
when we change the dimension of the sensor network. We have
compared the performance of our proposed algorithms to other
works to validate the performance and observed significant
improvement over the present literature.

Algorithm 1 Static and dynamic degree based optimal WCL

Input : R, PT , RSSI, d0, Bi(xi, yi, zi)[ ∀i]
Output : E, Ps, Pd

for m = 1, 2, · · · , M do
for i = 1, 2, · · · , N do
{% distance calculation using linearized path loss}
SPL(di,m)lin = PT −RSSIi,m

SPL(di,m)lin = SPL(d0) + 10α log10

(

di,m

d0

)

di,m = d010
SPL(di,m)lin−SPL(d0)

10α

{% linear weight calculation}
Wi,m = 1

di,m

end for
{% estimated positions using linear WCL}

Em(xe, ye, ze) =
∑N

i=1(Wi,mBi(xi,yi,zi))
∑

N
i=1 Wi,m

{% dynamic optimal degree}
g(dopt)m = Rm

Em

end for
{% static optimal degree}
gsopt = (EET )−1RET

for m = 1, 2, · · · , M do
for i = 1, 2, · · · , N do
{% static optimal weight}
W(i,m)sopt =

1
(di,m)gsopt

{% dynamic optimal weight}
W(i,m)dopt =

1
(di,m)gdoptm

end for
{% positions using static degree optimal WCL}

Ps(xe, ye, ze) =
∑N

i=1(W(i,m)sopt
Bi(xi,yi,zi))

∑

N
i=1 W(i,m)sopt

{% positions using dynamic degree optimal WCL}

Pd(xe, ye, ze) =

∑N
i=1

(

W(i,m)dopt
Bi(xi,yi,zi)

)

∑

N
i=1 W(i,m)dopt

end for

Algorithm 2 Static and dynamic degree based sub-optimal
WCL

Input :PT , RSSI, , d0, dmax, dmin, Bi(xi, yi, zi)[ ∀i]
Output : Ps, Pd

for m = 1, 2, · · · , M do
for i = 1, 2, · · · , N do
{% distance calculation using linearized path loss}
SPL(di,m)lin = PT −RSSIi,m

SPL(di,m)lin = SPL(d0) + 10α log10

(

di,m

d0

)

di,m = d010
SPL(di,m)lin−SPL(d0)

10α

{% static sub-optimal degree}
gssopt = log10(dmax)
{% dynamic sub-optimal degree}
gdsoptm = log10(di,m − dmin)
{% static sub-optimal weight}
W(i,m)ssopt =

1
(di,m)gssopt

{% dynamic sub-optimal weight}
W(i,m)dsopt =

1
(di,m)gdsoptm

end for
{% positions using static degree sub-optimal WCL}

Pms
(xe, ye, ze) =

∑N
i=1(W(i,m)ssopt

Bi(xi,yi,zi))
∑

N
i=1 W(i,m)ssopt

{% positions using dynamic degree sub-optimal WCL}

Pmd
(xe, ye, ze) =

∑

N
i=1

(

W(i,m)dsopt
Bi(xi,yi,zi)

)

∑

N
i=1 W(i,m)dsopt

end for
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